Dynamic Engineers Inc. 2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com #### C7LC) \$) \$@&\$\$A < n!5!J UHF Ultra-Low Phase Noise OCXO in Connectorized Package #### Features and Benefits Low noise 200MHz sine wave output -120 dBc/Hz @ 100 Hz and -140 dBc/Hz @ 1 KHz Rugged packaged with SMA output Less than ±200 ppb frequency stability over -40°C to +85°C #### **Typical Applications** Ideal for reference clock for X-band transponders #### Description Use of advanced low noise quartz crystal technology and processes to generate a highly stable 200 MHz reference clock output. # Mechanical Drawing & Pin Connections #### Pin Connection: | Pin# | Symbol | Function | |------|--------|----------------------| | 1 | Vs | Supply Voltage | | 2 | GND | Ground | | 3 | Vc | Control Voltage(EFC) | | SMA | RF OUT | RF Output | Unit in mm 1mm = 0.0394 inches 5.0 # Dynamic Engineers Inc. 2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL: Sales@DynamicEng.com # C7 LC) \$) \$@&\$\$A < n!5 !J ` UHF Ultra-Low Phase Noise OCXO in Connectorized Package ## **Specifications** | Oscillator | Sym | Condition | Value | | | Hade | Note | |---|-----------------------|--------------------------------------|-----------|----------|------|--------|------| | Specification | | Condition | Min. | Тур. | Max. | Unit | Note | | Nominal Frequency | F_{nom} | | | 200.000 | | MHz | | | Signal Waveform | | | Sine wave | | | | | | Load | R_L | ±5% | 50 | | | Ω | | | Output Level | | | +7 | +10 | +13 | dBm | | | Harmonics | | | | -35 | -30 | dBc | | | Sub-harmonics | | Multiples of f _{OUT} /2 | | -40 | -30 | dBc | | | Spurious | | · | | | -90 | dBc | | | Power Supply | | | | | | | | | Supply Voltage | Vs | | 11.4 | 12.0 | 12.6 | V | | | Current Consumption Steady State | | @ +25°C | | | 300 | mA | | | ' vvarm-up | | · · | | | 700 | IIIA | | | Warm-up Time @+25°C | | $\Delta f_{final}/f_0 < \pm 0.1 ppm$ | | | 5 | mins | | | Frequency Adjustment Range | | | | | | | | | Electronic Frequency Control (EFC) | | | ±1.5 | | ±3 | ppm | | | EFC Voltage | Vc | | 0 | 4.0 | 8.0 | V | | | EFC Slope | $\Delta f/\Delta V_C$ | | | Positive | | | | | EFC Input Impedance | | | 100 | | | kΩ | | | Modulation Bandwidth | | @3dB | 150 | | | Hz | | | Frequency Stability | | | | | | | | | Versus Operating Temperature Range | | -40°C to 85°C | | | ±200 | ppb | | | Initial Tolerance at +25°C | | @ $V_C = 4.0V$ | | | ±500 | ppb | | | Versus Supply Voltage variation (pushing) | | V _S ±5% | | | ±10 | ppb | | | Versus Load change (pulling) | | R _L ±5% | | | ±5 | ppb | | | Long Term Aging per day | | After 30 days operation | | ±1 | ±2 | ppb | | | Long Term Aging 1 st year | | | | ±100 | ±200 | | | | Long Term Aging 10 years | | | | | ±1.5 | ppm | | | | | 10 Hz | | | -90 | | | | | | 100 Hz | | | -120 | | | | Phase noise | e noise | | | | -140 | dBc/Hz | | | | | | | | -155 | | | | | | ≥100 kHz | | | -165 | | | # Temperature and Absolute Maximum Ratings | Parameter | Sym | Min. | Max. | Unit | Condition | |-----------------------|-----|------------------------|---------------------|------|-----------------------| | Operating Temperature | | -40 | +85 | °C | | | Storage Temperature | | -55 | +105 | °C | | | Supply Voltage | Vs | -0.5 | V _S +10% | V | V _s to GND | | Control Voltage | Vc | -0.5 | 15 | V | V _C to GND | | Enclosure (LxWxH) | | 50.0 x 50.0 x 21.0 max | | mm | | | Weight | | | 60 | g | | ### **Environmental Conditions** | Test | IEC
60068
Part | IEC
60679-1
Clause | MIL-STD-
202G
Method | MIL-STD-
810F
Method | MIL-PRF-
55310D
Clause | Test Conditions (IEC) | |--|----------------------|--------------------------|----------------------------|----------------------------|------------------------------|--| | Sealing tests
(if applicable) | 2-17 | 5.6.2 | 112E | | 3.6.1.2 | Gross leak; Test Qc
Fine leak: Test Qk | | Solderability Resistance to soldering heat | 2-20
2-58 | 5.6.3 | 208H
210F | | 3.6.52
3.6.48 | Test Ta Method 1 Test Td ₁ Method 2 Test Td ₂ Method 2 | | Shock | 2-27 | 5.6.8 | 213B | 516.4 | 3.6.40 | Test Ea, 3 x per axes 100g,
6ms half-sine pulse | | Vibration,
Sinusoidal | 2-6 | 5.6.7.1 | 201A
204D | 516.4-4 | 3.6.38.1
3.6.38.2 | Test Fc, 30 min per axes,
10 Hz – 55 Hz 0, 75mm; 55 Hz – 2 kHz, 10g | | Vibration, random | 2-64 | 5.6.7.3 | 214A | 514.5 | 3.6.38.3
3.6.38.4 | Test Fdb | | Endurance Tests - Aging - Extended aging | | 5.7.1
5.7.2 | 108A | | 4.8.35 | 30 days @ +85°C, OCXO @+25
1000h, 2000h, 8000h @+85°C |