Features and Benefits Frequency Range from 10 MHz to 52 MHz 5.0 mm x 3.2 mm ceramic SMD package Up to ±0.5 ppm (depends on operating frequency and operating temperature) HCMOS and Clipped Sine Wave(without DC-CUT capacitor) output optional 3.3V or 5.0V supply Low power consumption Low height and light weight Compatible for automatic assembly #### **Description** A new series of low power consumption temperature compensated crystal oscillators with the latest low noise integrated circuit topologies. #### **Typical Applications** WiMAX, WLAN Telecommunication Mobile phone # **Mechanical Drawing & Pin Connections** Unit:mm 1mm=0.0394inch [TOP VIEW] #4 5.0±0.2 #3 70+7 #1 #2 Drawing No: MD140026-3 # PIN FUNCTIONS | Pin | Funttion | | | | |-----|-----------------------------|--|--|--| | #1 | VCON:VC-TCXO
GND/NC:TCXO | | | | | #2 | GND | | | | | #3 | Output | | | | | #4 | VDD | | | | ### **Specifications** | ations | | | | | | | |------------------|--|---|---|--------|---|--| | · | 3.3V | | 5.0V | | | | | Parameter | | Max. | Min. | | Max. | | | e | 10MHz | 52MHz | 10MHz | | 26MHz | | | ency | 13.000000MHz, 14.400000MHz, 16.368000MHz, 16.369000MHz, 16.800000MHz, 19.200000MHz, 19.680000MHz, 20.000000MHz, 26.000000MHz | | | | | | | ance* | | . 2 Onnm | | | . 2 Onnm | | | | - | ±2.0ppm | - | | ±2.0ppm | - | | - | | ±0.2ppm | | | | - | | - | | - | | | | - | • • | - | | ±0.2ppm | | | | - | ±1.0ppm | - | | ±1.0ppm | | | Variation | 2 97\/ | 3 63\/ | 4.75\/ | | 5.25V | | | | 2.01 V | 0.00 v | 7.75 | | 0.20 v | - | | - | | 1.5mA | | | | - | - | - | | 2.0mA | | | 2 MHz | - | 2.5mA | - | | - | | | | | | | | | | | 2 MHz | - | 6.0 | - | | - | | | | 0.8\/n-n | _ | 0.8\/n-r | , | _ | | | | 0.0 γ ρ | | 0.0 V P F | , | | | | | | | | | | | | | 2.97V | - | _ | | - | | | c "0") | - | | | | | | | | 45% | | | | | | | ie Wave) | | | | | | | | | 15pF | | | - | • | | | Range | 0.5V | 2 5\/ | 0.5\/ | | 2.5V | | | | | 2.5 V | | | 2.5 v | | | | | - | | | - | | | , , | 100kΩ | - 100kΩ - | | | - | | | 100 Hz | -115dBc/Hz | | | | | | | 1 kHz | -135dBc/Hz | | | | | | | 10 kHz | -148dBc/Hz | | | | | | | | 2ms max. | | | | | | | Range | -55°C to +125°C | | | | | | | | Stability vs. Tempe | rature Range Availa | bility | | | | | | Temperature Range | <u> </u> | | | | | | | -20°C to +70°C | | -30°C to +85°C | | -40°C to +85°C | | | | | | | | Conditional (depends on | | | e < 10ppm | Available | | | | operating frequency; case | | | | | by case) | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | by cas | | | | available) | | | | | | | | | | | | Condit | tional (depends on | | | | Available | Available | | | tional (depends on
ting frequency; case | | | | 1 kHz | Min. | Min. Max. S2MHz Min. Max. Min. Max. 13.00000MHz, 14.400000MHz, 16.3680 19.200000MHz, 19.680000MHz, Mity Expression Mity Expression Mity Expression Mity Expression Mity Expression Min. Max. Max. 15.680000MHz, 14.400000MHz, 16.3680 Ho. 2.0ppm Ho. 2.0ppm Ho. 2.2ppm 2ppm Ho | Sand | 3.3V 5.6 Min. Min. Min. Min. Min. 10MHz 13.00000MHz, 14.40000MHz, 16.368000MHz, 16.369000MHz 19.200000MHz, 19.680000MHz, 20.000000MHz, 26.0 20.00000MHz, 26.0 20.00000MHz, 26.0 20.00000MHz, 26.0 20.00000MHz, 26.0 20.00000Mz, 20.00000MHz, 26.0 20.00000Mz, 20.00000MHz, 26.0 20.00000Mz, 20.00000Mz, 20.00000MHz, 26.0 20.00000Mz, 20.00000Mz, 20.0000Mz, 20.000Mz, 20.0000Mz, 20.0000Mz, 20.0000Mz, 20. | | Other customized specifications maybe available. Please contact Dynamic Engineers Inc. for further details.